Conditioning Monitoring and Fault Diagnosis for a Servo-Pneumatic System with Artificial Neural Network Algorithms

نویسندگان

  • Mustafa Demetgul
  • Sezai Taskin
  • Ibrahim Nur Tansel
چکیده

On-line monitoring of manufacturing process is extremely important in modern manufacturing for plant safety, maximization of the production and consistency of the product quality (Song et al., 2003). The development of diagnostic systems for the industrial applications has started in early 1970s. The recent developments in the microelectronics have increased their intelligence and let them found many industrial applications in last two decades (Mendonca et al., 2009; Shi & Sepehri, 2004). The intelligent data analysis techniques are one of the most important components of the fault diagnosis methods (Uppal et al, 2002; Uppal & Patton, 2002). In this study, the faults of a pneumatic system will be monitored by using the artificial neural networks (ANN). When the speed control and magnitude of the applied force is not critical, pneumatic systems are the first choice. They are cheap, easy to maintain, safe, clean, and components are commercially available. They have even been used for precise control of industrial systems (Nazir & Shaoping, 2009; Ning & Bone, 2005). Unfortunately, their nonlinear properties and some limitations at their damping, stiffness and bandwidth characteristics avoid their widespread applications (Belforte et al., 2004; Tsai & Huang, 2008, Bone & Ning, 2007; Taghizadeh et al., 2009; Takosoglu et al., 2009). The interest for the development of diagnostic methods for pneumatic and hydraulic systems has increased in the last decade (Nakutis & Kaškonas, 2008). Researchers concentrated on the detection of the faults of the components. The condition of the pneumatic and hydraulic cylinders (Wang et al., 2004), and digitally controlled valves (Karpenko et al., 2003) were the main focus of the studies. Some of the other considered faults were leakage of the seals (Nakutis & Kaškonas, 2005, 2007; Yang, 2006; Sepasi & Sassani, 2010), friction increase (Wang et al., 2004; Nogami et al., 1995) and other

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

AN INTELLIGENT FAULT DIAGNOSIS APPROACH FOR GEARS AND BEARINGS BASED ON WAVELET TRANSFORM AS A PREPROCESSOR AND ARTIFICIAL NEURAL NETWORKS

In this paper, a fault diagnosis system based on discrete wavelet transform (DWT) and artificial neural networks (ANNs) is designed to diagnose different types of fault in gears and bearings. DWT is an advanced signal-processing technique for fault detection and identification. Five features of wavelet transform RMS, crest factor, kurtosis, standard deviation and skewness of discrete wavelet co...

متن کامل

Developing A Fault Diagnosis Approach Based On Artificial Neural Network And Self Organization Map For Occurred ADSL Faults

Telecommunication companies have received a great deal of research attention, which have many advantages such as low cost, higher qualification, simple installation and maintenance, and high reliability. However, the using of technical maintenance approaches in Telecommunication companies could improve system reliability and users' satisfaction from Asymmetric digital subscriber line (ADSL) ser...

متن کامل

Online Monitoring and Fault Diagnosis of Multivariate-attribute Process Mean Using Neural Networks and Discriminant Analysis Technique

In some statistical process control applications, the process data are not Normally distributed and characterized by the combination of both variable and attributes quality characteristics. Despite different methods which are proposed separately for monitoring multivariate and multi-attribute processes, only few methods are available in the literature for monitoring multivariate-attribute proce...

متن کامل

Stator Turn-to-Turn Fault Detection of Induction Motor by Non-Invasive Method Using Generalized Regression Neural Network

Condition monitoring and protection methods based on the analysis of the machine's current are widely used according to non-invasive characteristics of current transformers. It should be noted that, these sensors are installed by default in the machine control center. On the other hand, condition monitoring based on mathematical methods has been proposed in literature. However, they are model b...

متن کامل

Application of Radial Basis Neural Networks in Fault Diagnosis of Synchronous Generator

This paper presents the application of radial basis neural networks to the development of a novel method for the condition monitoring and fault diagnosis of synchronous generators. In the proposed scheme, flux linkage analysis is used to reach a decision. Probabilistic neural network (PNN) and discrete wavelet transform (DWT) are used in design of fault diagnosis system. PNN as main part of thi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012